Environmental Business Council of New England, Inc.

Plastics recycling: what happens after collection

EBCNE Webinar on Solid Waste Management: Big Battles in the World of Recycling

23 September 2021

ARCTIC CIRCLE by Alex Hallatt

Appeared in the Boston Globe on 8 August 2021. Used by permission of the cartoonist.

Thank you Alex!

CommonWealth

Resource Management Corporation

There's a lot more to recycling than collection!

- 1. What are plastics?
- 2. What is plastics recycling? When we collect plastics, what can we do with them?
- 3. What are pyrolysis and gasification? Are they recycling?

Plastics #1 - #7: the popular view

commercially sold water bottles, soft drink bottles, sports drink bottles, and condiment bottles.

in milk and juice bottles, detergent bottles, shampoo bottles, grocery bags, and cereal box

rigid, and is used for plumbing pipes, clear food packaging, shrink wrap, plastic children's toys, tablecloths, vinyl flooring, children's play mats, and blister packs (such as for medicines).

cleaning bags, bread produce bags, and garbage bags, as well as "paper" milk cartons and hot/cold beverage cups.

yogurt containers, deli bags, newspaper bags, food containers, furniture, luggage and winter clothing insulation.

as Styrofoam, is used for cups, plates, take-out containers, supermarket meat trays, and packing peanuts.

from the above six plastics is lumped together as a #7 plastic. things like CD's baby bottles and headlight lens

Plastics: an elemental view. How many molecules are there in a bowling ball? In a tire?

Plastics: an organic chemist's view

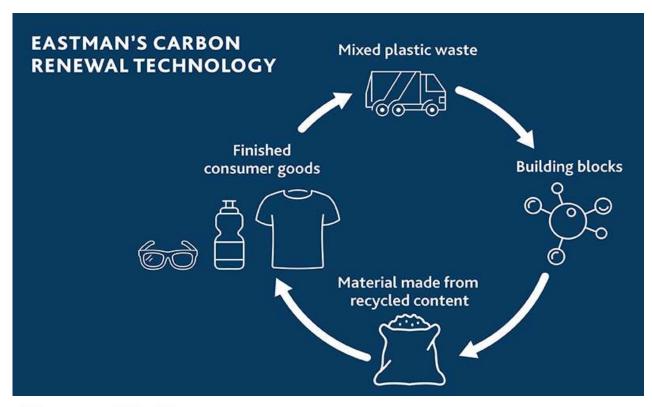
Atoms Carbon (C) Oxygen (O) Hydrogen (H) Chlorine (CI)

Monomer (C=C)
(HH)

Example shown is ethylene monomer – C2H4

Plastics: an organic chemist's view

Example shown is **poly**ethylene polymer – (C₂H₄)n


Plastics #1-#7: an engineer's view

Туре	Monomer	Melt/freeze T	Properties
#1 PET	C ₁₀ H ₈ O ₄	500 deg F	Strong but heat-sensitive
#2 HDPE	C ₂ H ₄	270 deg F	Strong, light and stable
#3 PVC	C ₂ H ₃ Cl	212+ deg F	Rigid, can be flexible with additives, very heat-sensitive
#4 LDPE	C ₂ H ₄	230 deg F	Thin/flexible version of HDPE
#5 PP	C ₃ H ₆	320 deg F	Strong and stable
#6 PS	C ₈ H ₈	800 deg F	Heat resistant; concerns with additive leaching
#7 Misc.	Many!	Wide range	Wide range of properties

What are the methods for plastics recycling?

- Mechanical recycling (shred soda bottles for carpet filler – <u>no change to the monomers</u>)
- Thermal recycling (sort, clean, heat, soften/melt, compress/pelletize, mold/stretch and harden/freeze – minimal changes to the monomers)
- Molecular, chemical or solvent recycling (pyrolysis and other processes to <u>change the monomers</u> through unlimited cycles)

Plastics monomer recycling

- Infinite cycling
- Flexibility
- Capex and scale
- Energy and resources

Post-consumer plastics recycling: US markets

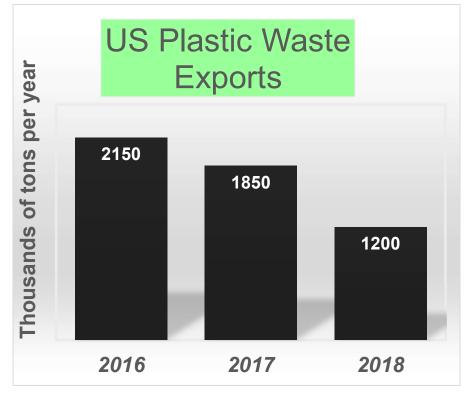
Local options

- Traders/processors supply chain
- End-users small-scale extrusion and molding products
- In New England, plastics waste supply exceeds demand

Regional facilities – large wasteshed areas

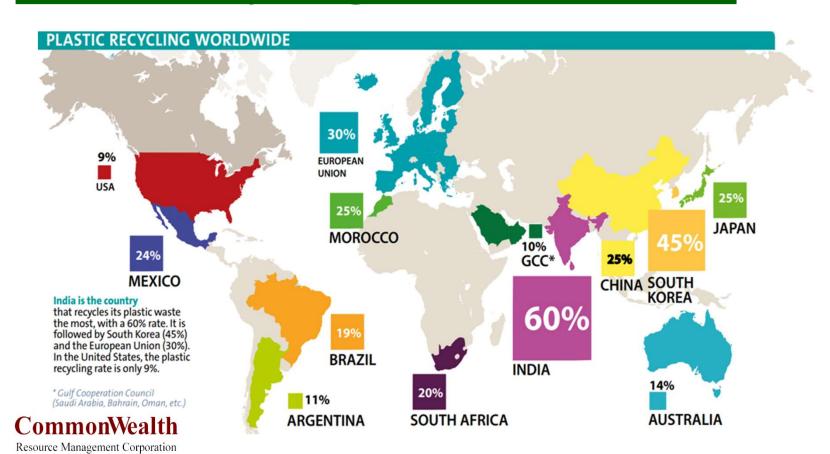
- Fayetteville, NC (Clear Path) –140,000 tpy PET
- Troy, AL (KW Plastics) 500,000 tpy HDPE/PP
- Winchester, VA (Trex) LDPE/HDPE film

Exports



Post-consumer plastic global markets, 2017-2021

2013	China's "Green Fence" limits all scrap		
	contamination, including plastics		
2018	China's "National Sword" bans mixed plastic		
	waste imports, limits contamination to 0.5%		
2018	Other Asian countries limit imports		
	Chinese plastics companies enter US market		
2019	MRFs stockpile plastics, reduce collection		
	China and US announce tariff increases		
2020	Pandemic reduces economic activity		
2021	Big freeze in Texas disrupts resin production		
Ongoing	Concerns with ocean waste, climate change		


Plastics recycling: export markets, 2017-2018

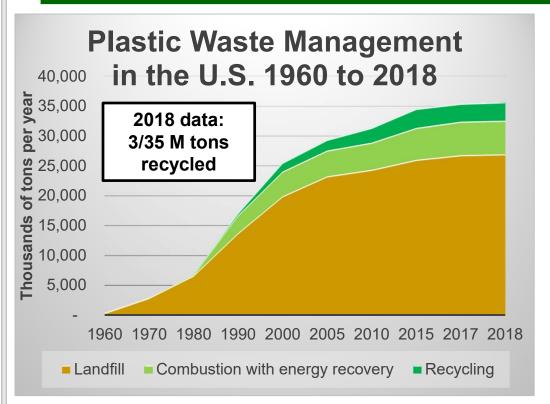
China bans mixed plastic imports on January 1, 2018 limits contamination to 0.5% as of March 1, 2018

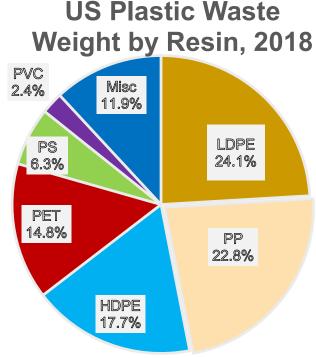
	2017	2018
China	611	60
Hong Kong	407	132
Vietnam	148	84
India	148	144
Malaysia	130	228
Mexico	56	48
Indonesia	37	36
Taiwan	37	60
Thailand	37	120
Other	93	132
	1850	1200

Plastics recycling around the world

New restrictions on waste exports in trade

- Control trading of overly-contaminated scrap
- Reduce impacts on oceans


Basel Convention, 2021


- Plastic waste exports require notice and consent
- 187 countries sign; the US has not yet signed
- US waste plastic exports are now limited to
 - Pre-sorted clean uncontaminated materials; or
 - Bilateral agreements with notice and consent (Canada, Mexico, OECD)

Circular Economy Resolutions for UN Conference on the Environment, Nairobi, Kenya 2022

Plastic waste: US tons and resins

USEPA data. Exports not shown

In crisis there is opportunity!

- Crisis: imbalance of waste plastic supply/demand
- Public sector response: reduce plastics waste
- Industry response: add plastics recycling capacity
 - Increased interest in ESG investments
 - New corporate carbon footprint reduction goals
 - Domestic sources improve supply chains
 - Recycled resins depend less on oil markets

Evolving hierarchy for plastics recycling

- A. Reduce plastics waste
- B. Return plastic waste to commerce
- C. Avoid/reduce fossil fuel use/emissions
- D. Dispose of the irreducible minimum

Evaluation criteria

- Energy use and emissions from processing
- Energy use and emissions from transport
- Carbon footprint over the use/recovery life-cycle

Reduce plastics waste. Minimize energy use and emissions from transport

U.S. Plastics Pact Unveils National Strategy to Achieve 2025 Circular Economy Goals. June 15th, 2021

- 1. Eliminate problematic or unnecessary packaging.
- 2. Make all plastic packaging reusable, recyclable, or compostable.
- 3. Recycle or compost 50% of plastic packaging.
- 4. Achieve average for plastic packaging of 30% recycled or responsibly-sourced bio-based content

https://usplasticspact.org/

New large-scale plastics recycling facilities

PureCycle (Proctor & Gamble): replace PET/HDPE with PP

- 50,000 tpy new capacity, Ironton, OH by 2022
- 500,000 tpy new capacity by 2025

Envision Plastics:

- Diversion of ocean-bound plastics to produce resins
- Production of food-grade post-consumer HDPE at former MRF in Reidsville, NC

New large-scale plastics recycling facilities

Eastman Renew: carbon renewal technology

- Allows full recycling of C-H monomers, 1-2 and 4-7
- Can recycle infinite times with no loss of quality
- 100,000 tpy new capacity, Kingsport, TN, by 2022

Brightmark: pyrolysis/gasification of 1s through 7s

- 100,000 tpy new capacity, Ashley, IN, in start-up
- 400,000 tpy new capacity in Macon, GA by 2025

Pyrolysis process: decompose polymers to gases and monomers with

- Controlled heat and pressure
- No oxygen (prevent burning)
- Catalysts
- Distillation and post-processing

Products include

- Plastic monomers
- Liquid fuels (synthetic diesel, jet fuel, heating oil)
- Biochar and solid residues

Other pyrolysis/gasification processes

Alternative feedstocks

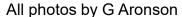
- Biosolids (carbohydates) with PFAS destruction
- Mixed plastics and products (hydrocarbons) preprocessed to a physical spec

Other products

- Electricity (steam turbines and IC engines)
- Renewable pipeline gas

Small-scale skid-mounted facilities

Reduce energy for transport


Waste plastics to diesel by pyrolysis, Jiangsu Province, Republic of China

1. Feedstock pre-processing

2. Conversion in a reactor vessel with mixing, heat and a catalyst

3. Product distillation and refinement

Small-scale pyrolysis/gasification facility development in the Northeast:

- 1. Sustane Technologies, Chester, NS in start-up
- 2. Warwick, RI pre-construction development
- 3. Aries CleanTech, Taunton MA in MEPA permitting process
- 4. Trashology: pilot test facility, Concord, MA
- 5. Nantucket RFEI process planning and procurement process

MassDEP guidance on pyrolysis/gasification

Letter to City of Taunton, July 2019

Technology	Status of 1990 permit moratorium	
New MSW combustion capacity	Applies	
Use syngas from pyrolysis or gasification to make electricity	Limited to 350,000 tpy MSW statewide capacity	
Transportation liquid fuels (synthetic diesel, jet fuel)	Exempt	
Other fuels that might be combusted (synthetic home heating oil, pipeline natural gas)	Not addressed yet	

MassDEP guidance on pyrolysis/gasification

Letter on Aries CleanTech project in Taunton, July 2019

Projects will require upfront recycling programs with measurable and enforceable performance standards

- Implies that source separation/recycling is preferred to pyrolysis
- Standards will depend on technology
- No precedents yet

Where should local pyrolysis/gasification be in the hierarchy?

- Monomer cycling vs. fuel/energy production
- Net carbon footprint of local vs. remote recycling?
- Fate of exported material not known with certainty

De-carbonization vs. de-fossilization

- Mass. de-carbonization roadmaps have a continuing role for synthesized liquid fuels
- Cost, quantities and sources are "major uncertainties requiring further in-depth study"
- Pyrolysis/gasification of plastics could fill role as an alternative to bad-politics biomass

Summary

- Consider monomers
- Export limits led to supply/demand imbalance
- New actions to address waste plastics
 - Public action to reduce waste plastic supply
 - Private action to add recycling capacity
- Emerging pyrolysis technology regionally and locally for monomer recycling, liquid fuels and electricity

Evolving hierarchy for plastics recycling

- A. Reduce plastics waste
- B. Return plastic waste to commerce and
- C. Avoid/reduce fossil fuel use and emissions
- D. Dispose of the irreducible minimum

Evaluation criteria

- Energy use and emissions from processing
- Energy use and emissions from transport
- Carbon footprint over the use/recovery life-cycle

Thank you for listening. SUPPORT THE EBCNE !!!

George Aronson, Principal

CommonWealth

Resource Management Corporation

On the web at www.crmcx.com